Search results

1 – 1 of 1
Article
Publication date: 2 January 2018

Evica Stojiljkovic, Bojan Bijelic, Miroljub Grozdanovic, Marko Radovanovic and Igor Djokic

The purpose of this paper is to identify potential helicopter pilots’ errors during their interaction with the flight deck in the process of starting a helicopter in night-time…

Abstract

Purpose

The purpose of this paper is to identify potential helicopter pilots’ errors during their interaction with the flight deck in the process of starting a helicopter in night-time conditions.

Design/methodology/approach

Systematic Human Error Reduction and Prediction Approach is used for the analysis of the pilot–flight deck interaction. This methodology was used for the identification of errors for 30 pilots during a period of 10 years. In total, 55 errors were identified, and most common errors noted are: error of omission, caused by pilots’ lack of attention or longer periods of no flying, and error of wrong execution, caused by misunderstanding a situation.

Findings

Hierarchical task analysis and classification of pilot’s tasks were used for the analysis of consequences, probability of occurrence, criticality and remedial strategies for the identified pilot error.

Research limitations/implications

This paper does not give an ergonomic analysis of the flight deck, as that is not its subject. However, results of the research presented in this paper, together with results presented in references, clearly show that there are disadvantages in the ergonomic design of flight decks.

Practical implications

Based on the identified pilot errors and with respect of existing ergonomic solution, it is possible to begin with the reconstruction of flight decks.

Social implications

Higher quality of pilot–flight deck interaction must be ensured for both pilots’ and passengers’ safety, as even a slightest error can lead to catastrophic consequences.

Originality/value

The value of this paper lies in the fact that it points to the need for synergy of ergonomic design and human reliability methods.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 1 of 1